If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+3y-9=0
a = 9; b = 3; c = -9;
Δ = b2-4ac
Δ = 32-4·9·(-9)
Δ = 333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{333}=\sqrt{9*37}=\sqrt{9}*\sqrt{37}=3\sqrt{37}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{37}}{2*9}=\frac{-3-3\sqrt{37}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{37}}{2*9}=\frac{-3+3\sqrt{37}}{18} $
| 3u−–5=11 | | 2n-8-n-46=-4 | | -15=1/2(9x+6) | | 9x-280=x+72 | | X/2-5y=10-6 | | 3n+4n=−14* | | -5/2x=-11 | | x/7-18=12 | | 1/2x=3+11 | | C(x)=25.50x+50 | | -6(1+2n)=6-8n | | 3x+15=8x+24 | | z2− 2=1 | | 9+6-15=15x-12x | | 5(x+4)+3=-5(7-x)+2 | | y+15=80 | | (3a+1)/4×(25/4)=35/2 | | 30=4÷5x-10 | | 5x+3/2=44 | | Y=5r | | 14=9x+5* | | 8(m-5)=-96 | | 4y-2(y-5)=3y | | -3/2x=-10 | | -1/2x-3/5=x | | x=(20+0.5x)+0.15(20+0.5x) | | 50q-43=42-81 | | X.3(x-5)=12+2x | | 9x+3+2x+3=53 | | 7x+8=29* | | 4t=12÷5 | | -7w-4/3=7/3w-1/2 |